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The initial stages of transcription by RNA polymerase are frequently marked by pausing and stalling events.
These events have been linked to an inactive backtracked state in which the polymerase diffuses along the
template DNA. We investigate theoretically the influence of RNA secondary structure in confining this diffu-
sion. The effective confinement length peaks at transcript lengths commensurate with early stalling. This
finite-size effect accounts for slow progress at the beginning of transcription, which we illustrate via stochastic
hopping models for backtracking polymerases.
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The transcription of information encoded in the genome
into RNA form plays a pivotal role in sustaining biological
cellular function �1,2�. The process is executed with remark-
able efficiency by the macromolecular machine RNA poly-
merase, which steps along a DNA template, assembling and
extruding a complementary RNA transcript �Fig. 1�. Follow-
ing the initiation of transcription, a high density of poly-
merases on the template �3� indicates that progress is slow
when the RNA transcript is very short. Elongation reaches
normal speeds some time after the RNA has polymerized
enough to emerge from the enzyme. This suggests that tran-
scription may be self-regulated by its RNA product. Here, we
investigate the notion that this regulation is controlled by an
intrinsic physical mechanism pertaining to the ability of the
RNA molecule to fold.

The region in the vicinity of the initiation site, termed the
promoter, is characterized by promoter-proximal pausing, re-
sponsible for the initially slow transcription. While pausing
is prevalent throughout the entire process, promoter-
proximally paused polymerases experience exceptional diffi-
culty in recovering from pauses in order to resume synthesis.
By contrast, the polymerase productively elongates the RNA
transcript once it has formed a length of around 50 nucle-
otides. It has been shown that the inability to recover can be
induced via the truncation of the nascent RNA during normal
elongation, which naturally supports the suggestion that
elongation is controlled by the length of the emergent RNA
transcript �4�.

A large and important class of pauses involves the poly-
merase backtracking along the DNA template, maintaining
the length of the RNA-DNA hybrid by feeding the newly
formed RNA through a channel at the front of the enzyme
�Fig. 1�b�� �5–7�. In the backtracked state, the polymerase is
thought to move diffusively along the DNA �8–12� until it
returns to the catalytic pathway and resumes synthesis. This
recovery can be assisted by auxiliary proteins which realign
the RNA by cleaving the portion of transcript in front of the
RNA-DNA hybrid �5,13�. The short pieces of RNA are
thought to have regulatory functions, and recent studies have
linked their production to the positioning of nucleosomal
roadblocks �14,15�. These experiments indicate that the short
transcripts may be generated when nucleosome-induced
backtracking results in transcript cleavage because the poly-
merase cannot recover without assistance.

Since diffusive return times in confined geometries scale
with system size �16�, one expects that the likelihood of un-
assisted recovery will be relatively small when the poly-
merase has ample space for backtracking. The sequence-
specific pairings between nucleotides on an RNA molecule
may influence backtracking by effectively shortening the
length scale on which the polymerase can diffuse �17–19�.
Furthermore, the absence of such a mechanism would be
particularly prevalent at the first nucleosome, where the tran-
script is too short to form stable secondary structures. This
provides a physical basis for the difficulty experienced by
promoter-proximally paused polymerases in resuming syn-
thesis. Here, we study the statistical mechanics of RNA sec-
ondary structures and reveal a finite-size effect in the con-
finement length of backtracked polymerases. This effect
accounts for slow progress at the beginning of transcription,
as we show through an analysis of stochastic hopping models
of backtracking.

With this in mind, we now examine the length-dependent
conformational characteristics of RNA. As depicted in Fig. 1,
we define the number of consecutive unpaired bases of RNA
adjacent to the polymerase, ��S�, for a given secondary
structure S. Secondary structure describes the microstate of
the transcript and may be defined as a set of base pairs �i , j�,
with i� j by convention, in which each base appears at most
once. The mean number of unpaired bases adjacent to the
polymerase is drawn from an equilibrium ensemble,

���N�� = Z�N�−1 �
S���N�

��S�e−E�S�, �1�

where ��N� defines the set of all allowed secondary struc-
tures for a transcript of N bases. The energy E�S� of a given
structure is defined with respect to the energy associated with
an unpaired base �in units of kBT�, and the corresponding
partition function Z�N� is given by

Z�N� = �
S���N�

e−E�S�. �2�

The causal aspect of cotranscriptional folding �the simul-
taneous stepwise production and folding of the RNA tran-
script� suggests that a native ground state for the RNA strand
may not necessarily be the most likely conformation since
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the folding occurs in a time-dependent fashion. Perhaps more
likely is a scenario in which sectional folds constituting non-
native metastable conformations are adopted by the tran-
script �21�. However, the dearth of microstates accessible to
the short transcript in the vicinity of the promoter suggests
that an equilibrium description is a good approximation for
our purposes.

We can divide the sum in Eq. �1� into structures for which
the base closest to the polymerase is paired �and thus
��S�=0� and those for which it is unpaired. The terms in the
former set vanish, and we can write the remaining sum in
terms of secondary structures for transcripts comprising
N−1 bases. We obtain

���N�� =
Z�N − 1�

Z�N�
„1 + ���N − 1��… . �3�

This is consistent with the fact that the mean will be linear in
N while the transcript is too small to form stable base pair-
ings. During this early phase, the system has access to a
single microstate corresponding to Z�N�=1. The linearity
breaks down upon introduction of additional microstates due
to self-interaction. This occurs when the number of tran-
scribed bases exceeds a minimum, which is related to the
RNA persistence length. We define this minimum as �, such
that any paired bases i and j must satisfy �j− i���. We can
iterate the relation in Eq. �3� and note that ���0��=0 to arrive
at

���N�� =

�
k=0

N−1

Z�k�

Z�N�
. �4�

For large transcripts, both the numerator and denominator in
this expression are rapidly increasing functions of N. An ex-
tensive free energy in the thermodynamic limit corresponds
to a power-law partition function of the form

Z�N� 	 �N, � � 1. �5�

Such an ansatz leads to a finite saturation of ���N�� in the
limit of long transcripts,

���N�� 	
1 − �−N

� − 1
→

N→�

1

� − 1
. �6�

This has interesting implications for the limit in which the
polymerase elongates productively. Here, the addition of a
nucleotide incites the growth of the self-interacting part of
the transcript and has no effect on the length of the unpaired

extremal portion of RNA near the polymerase �22�.
The crossover from linear behavior to this saturation falls

precisely in the region we wish to probe. While it is clear
that both the numerator and denominator in Eq. �4� increase
monotonically for N��, the behavior of their quotient is
sensitively dependent on both � and the effective energy
associated with base-pairing interactions. The crossover re-
gion is characterized by competition between the restricted
microstate space for small transcripts and the relative statis-
tical weight of self-interacting structures. The mean exhibits
a maximum where �N���N��=0 such that

�N
ln �
k=0

N−1

Z�k�� � �Nln Z�N� , �7�

where �N denotes a continuum approximation of the deriva-
tive with respect to N.

Depending on the intrinsic structural characteristics of the
transcript, this may occur prior to saturation, forming a maxi-
mum for finite N. Introducing an appropriate model for the
energy E�S� of each secondary structure, Eq. �4� can be
evaluated explicitly. Ideally, this model should account for
all contributions to secondary structure free energy, including
favorable base-stacking interactions and unfavorable bending
and looping of the RNA.

A first approximation dispenses with sequence informa-
tion and identifies the energy of each possible structure as a
sum of all base-pairing energies E0, such that the energy
associated with a secondary structure depends only on its
magnitude, E�S�=E0�S�. In this case, the base-pairing energy
describes an effective energy, which encodes both energy
penalties and energy payoffs in a single value, common to all
pairs along the transcript. The partition function correspond-
ing to this model forms a sum of polynomials in e−E0 with
combinatorial coefficients. The resulting mean number of
consecutive unpaired bases adjacent to the polymerase is
plotted as a dotted line in Fig. 2.

Within this simplified framework, we can include impor-
tant physical characteristics influencing state space by ex-
cluding certain secondary structures from the ensemble. This
includes intertwining loop structures �or pseudoknots�, which
are infrequently seen in naturally occurring RNA and typi-
cally omitted from analysis �23�. We form the reduced en-
semble by considering a restricted set of base pairs for which
any two pairs �i , j� and �i� , j��, with i� i�, can either be
independent where i� j� i�� j�, or nested where
i� i�� j�� j. The partition function for a strand containing
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FIG. 1. �Color online� Stages of transcriptional elongation: �a� promoter clearance, �b� promoter-proximal pausing, and �c� productive
elongation. The polymerase typically protects up to Nprot	23 bases of the RNA in elongation mode �20�. Inset: the number of consecutive
unpaired bases adjacent to the polymerase in a particular secondary structure S is denoted by ��S�. In this example, ��S�=4.
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N bases can then be written recursively in the form

Z�N� = Z�N − 1� + �
k=1

N−�

Z�k − 1�Zcl�N − k + 1� , �8�

where Z�0�=Z�1�=1 and Zcl�N� denotes the closed partition
function associated with a substrand whose ends form a base
pair. Here, we have built in an effective persistence length by
restricting the upper limit of the sum to N−�.

This model has been studied extensively �24–27� and the
case for which an effective energy is associated with each
base pair yields Zcl�N�=e−E0Z�N−2�. This has been approxi-
mated in the thermodynamic limit for �=1, revealing an
asymptotic length dependence of N−3/2�1+2e−E0/2�N �25–27�.
In the large-N limit, we should thus expect to see the behav-
ior described in Eq. �6� with �= �1+2e−E0/2�. For small N, the
energy required to bend the transcript tends to dominate any
base-pairing payoff �28�. With this in mind, we take E0�0 �a
base-pairing penalty� and plot an exact enumeration of
���N�� along with the predicted asymptote in Fig. 2. The
mean peaks at a value determined by the effective energy
attributed to base pairing. We compare the case for which
�=1 to that in which it is a more realistic �=4. The devia-
tion from linear behavior coincides with the introduction of
multiple microstates. Both cases exhibit a saturation to finite
���N�� in the limit of large N. In the former case, this value
is approximated well by the predicted asymptotic value. The
saturation contrasts strongly with the case for which all pos-
sible base pairs are included �dotted line in Fig. 2�. There, the
decay is much faster and reflects the fact that we overlook
any topological difficulty posed by base pairing.

While these simple models exhibit the expected linear re-
gime and saturation at finite N, they lack the scope to differ-
entiate between base pairs which attract an energy payoff and
those which cost energy. An increase in the payoff associated
with stacked base pairs is expected to augment the statistical
weight associated with polymerase-proximal conformations,
resulting in a narrower peak saturating at a lower value of

���N��. This suggests that a sequence prone to stacking �i.e.,
one containing long complementary subsequences� may curb
the tendency to backtrack by reducing the unpaired strand
length adjacent to the polymerase early in the process of
transcription. The expression in Eq. �8� can be computed
more accurately using a sequence-dependent empirically pa-
rametrized �29� exact enumeration algorithm for secondary
structure prediction �30�. Utilizing the NUPACK software �31�,
we are able to encode full sequence and structural informa-
tion, and we do so by constructing an ensemble of 4	105

randomly sequenced transcripts and averaging ���N�� over
this set. We obtain a disorder-averaged quantity ���N��,
which is plotted in Fig. 2. The resulting curve is remarkably
similar to those given by the reduced models, suggesting that
the small-N behavior is an inherent property of linear base-
pairing polymers.

We can similarly calculate an expected time of recovery
from a backtrack on a given sequence, assuming that the
secondary structure imposes a confining length scale on the
diffusive motion of the polymerase. We undertake a simple
hopping simulation corresponding to an unbiased random
walk in one dimension subject to a reflective boundary con-
dition. The recovery time is given by the mean first passage
time for a polymerase starting at site N−1 �in the reference
frame of the RNA, upon entering a backtrack� to reach N and
resume elongation. Stepping times are exponentially distrib-
uted with a mean of 1 s �12�. The reflective boundary lies at
the promoter for configurations without base pairings and
���N�� nucleotides upstream from the active site for all other
configurations. In terms of ���N��, for a given sequence the
effective confinement of the walk can be written as

Leff = ���N�� + Nprot/Z�N� , �9�

where Nprot	23 is the number of protected bases of RNA
�20�. We take an ensemble of random sequences and plot the
disorder-averaged mean recovery time in Fig. 3. The shaded
area indicates the region within which promoter-proximal
pausing is experimentally observed �1�. Clearly, there is a
marked increase in the expected recovery time for a back-
tracking polymerase in this region. The typical time required
to exit the backtracked state via cleavage has not been accu-
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FIG. 2. �Color online� Mean number of consecutive unpaired
bases adjacent to the polymerase as a function of the number of
unprotected bases, N. Curves illustrate ���N�� for homogeneous se-
quences using a simple base-pairing energy model with E0=3 and
�=1 �green �light� dashed line�, �=4 �green �light� solid line�, and
�=1 with all pairings included �green �light� dotted line�;
���N��=N �black dashed line� and the predicted asymptotic value
for �=1 �black dotted line�. Red �dark� circles depict ���N�� for
random sequences computed via an exact enumeration algorithm.
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FIG. 3. �Color online� Mean recovery time for a polymerase
backtracking on an ensemble of random sequences with �red empty
circles� and without �blue filled circles� confining secondary struc-
ture as a function of distance from the promoter in units of nucle-
otides. Shading indicates the region of slow elongation.
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rately measured but is expected to be on the order of 10 s
�11�. It would therefore appear that cleavage is far more
likely in the promoter-proximal region, owing to the absence
of secondary structure. Polymerases undergoing unrestricted
walks are expected to have monotonically increasing recov-
ery times as they move further away from the promoter,
while those confined by secondary structure have a reduced
and length-independent expected recovery time beyond the
promoter-proximal region.

We have presented a simple statistical physics argument
implicating the self-interactive nature of RNA in the regula-
tion of early transcription. In all physically realistic models
used to describe the secondary structure of the nascent RNA
strand, we find that the mean number of consecutive un-
paired bases adjacent to the polymerase displays a peak
where N is small and decays to a finite value in the thermo-
dynamic limit. This behavior is induced by the restrictions
imposed by the conformational space of a base-pairing linear

polymer. The effect manifests itself in a markedly increased
expected recovery time for a backtracking polymerase within
the region characterized by promoter-proximal pausing. Our
simulation results are directly comparable with single-
molecule experiments. A close analysis of the recovery char-
acteristics of transcripts too short or otherwise unable to fold
due to sequence incompatibilities would provide the relevant
statistics needed to verify our findings experimentally and
would confirm that the absence of pairwise interactions of
RNA prevents a backtracking polymerase from resuming
elongation in the promoter-proximal region.
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